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M O M E N T L E S S  M O D E L  O F  T H E  E L A S T O P L A S T I C  D E F O R M A T I O N  

A N D  L I M I T I N G  S T A T E  O F  T H I N  I N T E R L A Y E R S  

G .  V .  I v a n o v  a n d  V .  D .  K u r g u z o v  UDC 539.374 

There have been many investigations of the two-dimensional plastic deformation of layers positioned between rigid 
blocks [1, 2], but the studies have been restricted to examination of the limiting state of straight layers of uniform thickness 

subjected to special types of loads. Below, we formulate a plane-strain model for interlayers with the goal of modeling the 
entire process of  elastoplastic deformation of the layers - from the moment plastic strains develop to attainment of the 
limiting state. The layers are will be subjected to a combination of tensile (compressive), shear, and bending loads. We will 

consider the general case, when a layer may be curvilinear and of variable thickness. 

1. Approximat ion  of the Strain-Rate Dependence of Stress. We use the following equations [3] to describe elasto- 

plastic deformation and establish the dependence of the stresses on the mean strain rates within the time interval [t, t + r] 

~,j(t + r) = a~(t) + 3 [2pe~ - 2cr~(t + 3)l, 

a(t  + 3) = a(t) + K3e, g = E ~  [3(1 - 2v)], (1.1) 
1 1 

e!  = e# - C q e ,  o" = - = = 

where aij and eij are components of the stress and strain-rate tensors in a cartesian coordinate system; k is a non-negative 

quantity; k = 0 at J2(t + r) < J2*- The value of k is determined by the condition J2(t + r) = J2* in the case of ideal 

plasticity and the condition 

(1 - x ) [ / 2 ( t  + r )  -- J ; ]  
2 =  

2:,arJ2(t + r )  

in the case of  isotropic strain-hardening. Here, J2(t + r) = I/2aij '(t + r)aij'(t + r); J2* = max(J2 s, maxJ2); J2 s is the value 
of J2 at which an element of  the medium first begins to deform plastically; maxJ 2 is the largest value of J2 for the entire 

history of deformation of the element; • = /~'/tz is the strain-hardening coefficient; ~t' is the shear modulus on the curve 

describing pure shear of the element;/~ is the shear modulus; E is the elastic modulus; ~, is the Poisson's ratio. 
The method used in [4] to prove the uniqueness of stress intensities in problems concerning elastoplastic deformation 

can be used here to prove that the problem of determining the stresses aij(t + r) so as to satisfy (1.1), the equilibrium 

equations 

+ L = 0 (1.2) a~ 

and the boundary conditions 

o,,(t + 3)~ls,, --- p0 u, ls~ = u ~ 

can have only a unique solution. In the case of isotropic strain-hardening, the problem of finding the strain rates eij will also 

have a unique solution. The value of X may be ambiguously determined by Eqs. (1.1) in the case of ideal plasticity. Here, 

aij(t + ~') may correspond to values of eij' besides those found by the algorithm that we will present here. 
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Due to the nonlinearity of Eqs. (1.1), they can be satisfied only by successive approximation. Below, we use a 

process of successive approximation that consists of two alternating stages: 1) solution of the problem of the deformation of 

an interface within the interval [t, t + r] with the dependence of k on the coordinates assigned in (1.1); 2) calculation of k 

from strain rates found at the previous stage by means of the following equations [3]: 

in the case of ideal plasticity 

$ * 
r2 = 0 when 4 ~< J; ,r*l  = ~ / ' / ' 2  - 1 when 4 > J2' 

in the case of isotropic strain-hardening 

~ _ • 2 1 5  _ 2 * 
)(Ja/4) 

l + r 2  1 + •  

Here 

1 
4 = -~  ', ''~',''' ~ = 21,r~; + o / ( t ) .  

In the first approximation, we assume that k = 0 everywhere in the interface. 
2. Stiffness Equations of Elements of the Interface.  In the momentless model being discussed here to describe the 

plane strain of an interface, we represent the latter as consisting of tetragonal elements (Fig. la, b). By the stiffness equations 
of an element, we mean the dependence of the forces at the boundaries of the element on the mean velocities of the bound- 

aries. In constructing these equations for each element, we introduce an oblique coordinate system ~ 1, ~2 E [ - 1 ,  1] [5]. 

Equations (1.1) are written in the. form 

~ + r) = a=a"re,j + a ,  , e=a = . _~ + 

a~ p = (1 - Y)g~ao(t) + Yc~'a(t), a(t)  = -~ [g, ao~a(t) + oJ3(t) 1, 

-~l,X)g~re=~ + (1 - Z ) a ( t )  + Xo33(t), (2.1) a3s(t + r)  = ( K -  2 - - 

= + , a ( ? ' ? ,  + ?,?'), 

3,,3o 3 = ax--7 e,  = - ~ e , ,  a , f l  = 1,2, X - (l + r2~' 

white equations (1.2) are written in the form 

Op"(t + r) au 
- -  + v'fff = 0, p=(t + r) = Aaar ~'~ + p~, 

aC 

A "a = qga"O"3, ~ ,  p;  = ~aqg3a ,  v~" = 131 x3=l ,  
(2.2) 

where b~B(t + r) and 6c, ~ are components of the stress and strain-rate tensors in the coordinate system ~'~; e i are the basis 

vectors of the cartesian coordinate system x i. 
Below, we simplify the notation in the formulas by designating b ~ ( t  + r), p'~(t + r) as b ~ ,  p'~. 

In constructing the stiffness equations, we make use of an approximation for the vectors p'~ 

(0"1 (l) 
p= = p= + p= ~j" (a = 1,2) (2.3) 

and three approximations for the velocity vector: 
(0) (0) ( l )  

u,  u"  = u = + u = ~= ( a  = 1 , 2 ) .  (2.4) 
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a 

Fig. 1 

b 

c 

Ic otqqolo  

(0) 

Here, u is the mean velocity in the given element; u a represents the mean velocities on the lines ~ = const. We assume 
(0~ 

that p~, u, and u ~ are connected by the equations 

f(or ao~=o,f(pa A% -p:-q~ 

q~ = ~'~'~'~ ~o~' " 5~ :~ ,  q~ = h , ~ ~ ' ~ / o ~  - ~, ~,, 
(o) co) . = Op= 
u = - u - A - ~  = 0 ,  w = {~ j , ,$2 E l - ] , l  l } ,  

where 3'1 and 3'2 are positive constants determining the forces associated with viscous drag qa. These forces are introduced 

into Eqs. (2.5) to suppress parasitic rotations of the type indicated in Fig. lc.  For q~ = 0, such rotations can arise in 

elements when the boundary conditions on the surfaces of the interface are formulated in the form of conditions for shear 

stresses. Past numerical calculations have shown that assigning 3,1 = 3,2 = 0.05 is usually sufficient to suppress parasitic 

rotations. 

In (2.5), A ~ is a tensor satisfying the condition A~a.a ~ 0. An equality is possible only if a = 0. In the model being 

discussed, we take 

A ~ = (B") -~, B~ = 3rf A"'dC~ (2.6) 
w 

With such a choice of A a, stiffness equations of the element based on linear approximations (2.3)-(2.4) are close to 

the stiffness equations based on quadratic approximations analogous to those used in [6, 7]. In the case of  rectangular elastic 

elements, Eqs. (2.3)-(2.6) are analogous to the equations employed in [8, 9] to construct the stiffness equations of elastic 

elements. 

We designate 

= " = = = u = �9 ( 2 . 7 )  P 1,~ = •  P=, u=l~"= = l  -+ 

It follows from (2.3)-(2.7) that 

pl§ _ p, + p2§ _ p2 4- 2(~f)(~ = O, 

(o) 

P'~ - P=_ - 3(A")C~ + u = - - 2u) = 0, (2.8) 

K + p=- - ( a ' ~ ) % ( r 2 4 7  - 4 )  - 2 (p ;  + q=)~o~ = o,  

(o) 

where the symbol ()(o) denotes averaging over oJ. Excluding u from (2.8), we find that the stiffness equations of an element 

of the interface can be written in the form 

P~ + P=- = C~ar(4+ - 4 )  + 2(P~,) ~~ (2.9) 

where D a#, C a#, and • depend only on the coefficients of  Eqs. (2.8). 

It follows from (2.3)-(2.5) that 
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[ o  r au~ au o f,x~ o~, L 
f a - ~ f P ~ 1 7 6 1 7 6  - +  ' o r /  o r  

"/t" Vg-~/1212"f I(a0---~Ul 1 " 32"4" ~/2(~222 " ,  31 + P : "  ~fdoJ.  

Using (2.10), we can show that, with assigned p~, Eqs. (2.9) determine the velocities u_~ to within the rates of translation of 

the element. 

We use u .  and p.'~ to represent the solution of Eqs. (2.1)-(2.2). It follows from (2.1)-(2.5) that 

f {Aa/~r b(u. - u:) 0(u. - u*) A" ap" ap__ ~ off', 
o a~: a r  + 0 r  " 0 r  + q~ " ~ t  d" 

= f { a - ~ l ( P : - P ~ ) ' ( u ' - u ~ ) l +  l y e - f - ( v ~ ' f ) c ~  

~o~ , a p  ~ ao~ i(A~)co ~ au p au. 
+ (u-- up - , ,  T )  T + - 7 ?  aT 

+ l(p~) ~~ - p'; + p" - p" + I" dco. 

(2.11) 

Considering that p.C, is a quantity on the order of the product of the stress vector and the linear dimension of the element, we 

find that the right side of (2.11) consists of terms on the order of this dimension and terms on the order of "/1, 72- It follows 
from this that by representing the -interface as consisting of a successively increasing number of layers of elements with (2.9) 

as their stiffness equations, we can obtain a sequence of solutions that converges to the solution of Eqs. (2.1)-(2.2). The 

present model of interface deformation, involving representation of the layer in the form of a single layer of elements, is the 

first approximation in this sequence of solutions. 
3. Conditions on the Surface of the Interface.  We will restrict ourselves to the class of problem in which the 

displacements of the blocks are assigned as functions of time. We use w e to represent the velocities of particles of the rigid 

blocks at their interfaces with the interface. 
In the model we are considering, normal components of velocities at interfaces assumed to be continuous: 

(u2• - w )  �9 9 2 1 2  �9 = 0. (3.1) 

The shear stresses on the surfaces of the interface cannot exceed the value r .  = ~J~. We therefore take the following 

in the given model 

(u'§ - w . )  �9 a l l r  = 0 (3.2) 

with 

(3.3) 

If inequality (3.3) is violated under condition (3.2), we replace (3.2) by the equality 

, (3.4) 

Here, we assume that the sign in the right side of (3.4) is the same as the sign of ( p + 2 . 9  t) I (2=1 under condition (3.2). If the 
following inequality is violated under condition (3.4) 

J(o'. �9 ~ , ) ( w  - u,.) �9 ~ , 1 1 , ,  ._. o, (3.5) 

(3.4) is replaced by condition (3.2). Inequality (3.5) means the rate of dissipation is negative during slip of the layer. 

We formulate the conditions for the tangential components of the velocities and the stress vectors on the surfaces ~2 
= - 1 of elements of the interface by analogy with (3.2)-(3.5). 
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4. Algebraic Equations of the Momentless Model of the Interface. Proceeding on the basis of (2.9) and boundary 

conditions (3.1)-(3.5) on the boundaries ~2 = _+ 1 of elements of the interface, we find that 

P'- = Aul. + ' ~ -  + ~ ,  p'- = co~. + n ~  ~_ + v .  (4.1) 

Equations (4.1) and the conditions expressing continuity of the vectors u 1 pl on the interfaces of adjacent elements form the 

system of equations 

P)+I = r(A,*l/2u)+, + B, . l /2u))  + ~',-1/2' 

/ = 0 , 1  . . . . .  N - l ,  
(4.2) 

where N is the number of  elements. If we add the following boundary conditions to (4.2) 

p~ =. Lo,.~ + ~o, p~ = r.,.~ + ~, (4.3) 

we obtain a system of algebraic equations that is closed relative to ui l, pil(i = 0, 1 ..... N). This system represents the model 

of the interface. The coefficients of system (4.2)-(4.3) depend on r and k and the form of the conditions for the tangential 

components of  the velocities and stress vectors on the boundaries ~2 = 31.1 of the elements. 

With assigned r and 3, and the above conditions on boundaries ~2 = .4. 1, we can solve system (4.2)-(4.3) by the trial- 

run method. We use the solution that is obtained to correct the value of k as indicated in Part 1. We also correct the bound- 

ary conditions o n  ~2 = q_ 1 as described in Part 3. The iteration is complete when conditions (3.2)-(3.5) and the analogous 

conditions on the boundaries ~2 = _ 1 of the elements are satisfied and the values of X in the next iteration differ little from 

X in the previous iteration. 

5. Limiting State of  a Straight Layer.  To illustrate the use of the model formulated above to describe interface 

deformation, we examined the ideal elastoplastic deformation of a straight interface in the case when one block was stationary 

and the other underwent translation and rotation. We calculated the forces P and Q and moment M necessary for deforma- 

tion: 
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t /2  t /2  t /2  

I" = fo~'Jx x, O. = fcr;2dXl, M• fa~2x,dx,, 
-t/2 -t/2 -l/2 

I I I 
M = M "  - z--Oh = ~ + -iO.h = - i ( M  § + M - ) .  

Here, l and h are the length and thickness of the interlayer; af2 and a~2 are the normal and shear stresses on the boundaries 

~2 = + 1 of the elements of the interface. The calculations were continued until we reached the limiting state, i.e. the state 

in which the interface was deformed with constant P, Q, and M. The circles in Fig. 2 show the limit loads in tension with 

shear and in bending with shear for an interface with l /h  = 10. 

Q P 2M 

The dashed lines in Fig. 2 show the limit loads corresponding to the approximate solutions obtained by L. M. 

Kachanov in [1, 10]. 

Figure 3 shows the distribution of the normal and shear stresses on the surfaces of an interface in the limiting state in 

tension with shear�9 The solid lines show the numerical solution obtained with q = 0.51 and p = 5.03, while the dashed lines 

show Kachanov's solution for q = 0�9 Since the stresses a ~  are symmetric relative to x 1 = 0, in Fig. 3 we show only 

their distribution at x I _> 0. 

Figure 4 shows the distribution of the normal and shear stresses on the surfaces of the interface in the limiting state 

in bending with shear. The solid lines show the numerical solution obtained with q = 0�9 and m = 1.42, while the dashed 

lines show Kachanov's solution [10] for q = 0.62. Since the graphs of the shear stresses a~" 2, a~- 2 are symmetric relative to 

x 1 = 0, in Fig. 4 we show only their distribution at x t _< 0. 

The d o t - d a s h  lines in Figs. 2a and 3 correspond to the approximate solution obtained from the following equations 

for the problem of the limiting state of an interface in tension with shear 

a I = -T- ~ . ,  h 0al~' -- 2T,, au [  - - n  = 0 ,  a , ,  - a u = 2 T .  ( 5 . 1 )  
ax I x 1 

when - 1 / 2  ~ x I ~ - -a;  

+ m - = - 0 when-a  ~ x I ~ 0. (5.2) 0'12 a l l  T,,, 0"22 ~ (711 ~ ~'XI 
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We similarly formulate the equations of the given approximate solution at 0 < x 1 

continuous everywhere within the interface. 

In accordance with this solution 

p =  ( 1 -  q)[2 + 1 ( 1  + q ) ] , m  = O. 

< l/2.  The stress o 11 is assumed to be 

(5.3) 

Assuming that a limiting state of compression with shear is realized in one part of the interface and that a limiting state of 

tension with shear is realized in the other part (with both states being described by equations of the type (5.1)-(5.2) and the 

stress cr11 being continuous everywhere in the layer), we obtain a family of approximate solutions to the problem of the 
limiting state of the interface. Figure 5a shows the distribution of the normal stresses on the surface (2 = 1 corresponding to 

these solutions. With an assigned length l of interface (l = l] + 12), these stresses depend on three parameters: a I, a 2, and 

l 1. The dependences of m, p, and q on these parameters can be written in the form 

a t +a~ /1-  12( 2 + l ~hq) ' 

l [ 1 -  a /32-  ( 1 -  a)72]t,  (5.4) 

t I t 2 a I a, 
z - a ,  7 =  

In accordance with (5.4), in the limiting state in bending with shear 

l 
m = (1 - q)[1 + T~(1 + q)'], p = O. (5.5) 

L J 

The dashed lines in Fig. 2b and Fig. 4 show the relation (5.5) between m and q and the corresponding distribution of normal 

and shear stresses when q = 0.62 and m = 1.42. 
In accordance with (5.4), in the limiting state in tension and bending 

& 
- - l  2 , q = O .  (5.6) 

It follows from the numerical calculations that at 1/h >_ 10, relation (5.6) between m and p agrees well with the limit loads 

calculated by the model of interface deformation constructed here. 
In the space of m, p, and q, Eqs. (5.4) correspond to a family of surfaces (Fig. 5b). Each of these surfaces passes 

through curves (5.3), (5.5), (5.6). Taking a l /a  2 = l l / l  2 in (5.4), we obtain 

m ---- ' 0)][1 q [1 + ~-~(1 + - - l q)] 2 �9 
(~ - q)[2 + ~ ( 1  + 

(5.7) 

Equation (5.7) is one of the simplest possible approximations of the relation between m, p, and q for the limiting 

state of  a straight interface. 
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